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Introduction Method Experiments
Objective: Label-noise robust image generation

Challenge and contribution

Incorporation of noise transition model

Proposal 1:  rAC-GAN (label-noise robust AC-GAN)

Proposal 2: rcGAN (label-noise robust cGAN)

Comprehensive study (336 conditions were tested in total)

Further analyses (see paper for details)

Key idea

Baseline 1: AC-GAN (auxiliary classifier GAN) [Odena et al. 2017]

Baseline 2: cGAN (conditional GAN) [Mirza & Osindero. 2014, Miyato & Koyama. 2018]

Goal is to construct a label-noise robust image generator
that can reproduce clean labeled data (a) even when
noisy labeled data (b) are only available during training.
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Noisy label Clean label

- Naïve conditional generative models construct a 
  generator conditioned on observable (noisy) labels (c).
- Our proposed rGANs (label-noise robust GANs) can 
  construct a generator conditioned on clean labels (d)
  even when trained with noisy labeled data (b).

Limitation: C can fit noisy labels when trained with noisy labels.
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Solution: We correct C prediction using the noise transition model.
Clean label classifier
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Limitation: G is optimized conditioned on noisy labels when trained with noisy labels.
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Solution: We correct D input using the noise transition model.
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Dataset: CIFAR-10 and CIFAR-100
Noise: Symmetric noise and asymmetric noise (noise rate μ ∈ {0, 0.1, 0.3, 0.5, 0.7, 0.9})
GAN configuration: DCGAN, WGAN-GP, CT-GAN, and SN-GAN
Comparison: AC-GAN vs. rAC-GAN and cGAN vs. rcGAN
Evaluation metrics: FID, Intra FID, GAN-test, and GAN-train

Quantitative results

AC-CT-GAN (36.4)

Qualitative results

rAC-CT-GAN (30.2)

cSN-GAN (72.0) rcSN-GAN (28.6)

The number indicates Intra FID. A smaller value is better.

[Baseline] [Proposed]

Effects of estimated noise transition model
We examined the effect when the noise transition model 
is estimated from data [Patrini et al. 2017].

Evaluation of improved technique
We examined the effect of an improved technique,
which we developed to boost the performance in a 
severely noisy setting.

Evaluation on real-world noise
We tested rGANs in a real-world noise setting using 
Clothing1M [Xiao et al. 2015], which includes real-world 
noisy labeled data.

AC-CT-GAN (45.7) rAC-CT-GAN (27.2)

cSN-GAN (33.7) rcSN-GAN (25.6)

1. CIFAR-10 symmetric (uniform) noise with μ = 0.7

2. CIFAR-10 asymmetric (class-dependent; e.g., cat ⇄ dog) noise with μ = 0.7Baseline
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2. GAN-train

Robust two-step training algorithm

Mutual information regularization

Qualitative results on Clothing1M

Comparison across all conditions

Confused between flipped classes

Failed to learn disentangled representations


