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Introduction

Objective: Label-noise robust image generation

Goal is to construct a label-noise robust image generator
that can reproduce clean labeled data (a) even when
noisy labeled data (b) are only available during training.

(a) Clean labeled data (b) Noisy labeled data
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Unobervable Observable

Challenge and contribution

- Naive conditional generative models construct a
generator conditioned on observable (noisy) labels (c).

- Our proposed rGANs (label-noise robust GANs) can
construct a generator conditioned on clean labels (d)
even when trained with noisy labeled data (b).

(c) cGAN trained with (b) (d) rcGAN trained with (b)
[Baseline] [Proposed]
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Key idea

Incorporation of noise transition model
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Method
Baseline 1: AC-GAN (auxiliary classifier GAN) [Odena et al. 2017]
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Noisy label classifier
Limitation: C can fit noisy labels when trained with noisy labels.

Proposal 1: rAC-GAN (label-noise robust AC-GAN)
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Clean label classifier

Solution: We correct C prediction using the noise transition model.

Baseline 2: cGAN (conditional GAN) [Mirza & Osindero. 2014, Miyato & Koyama. 2018]
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Limitation: G is optimized conditioned on noisy labels when trained with noisy labels.

Proposal 2: rcGAN (label-noise robust cGAN)
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Solution: We correct D input using the noise transition model.
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Experiments

Comprehensive study (336 conditions were tested in total)

Dataset: CIFAR-10 and CIFAR-100

Noise: Symmetric noise and asymmetric noise (noise rate y € {0, 0.1, 0.3, 0.5, 0.7, 0.9})
GAN configuration: DCGAN, WGAN-GP, CT-GAN, and SN-GAN

Comparison: AC-GAN vs. rAC-GAN and cGAN vs. rcGAN

Evaluation metrics: FID, Intra FID, GAN-test, and GAN-train

Quantitative results Qualitative results

Comparison across all conditions [Baseline] [Proposed]
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Baseline The number indicates Intra FID. A smaller value is better.
Further analyses (see paper for details) P o
. . . x' = argmax C'(y = i|x)
Effects of estimated noise transition model LEX'

We examined the effect when the noise transition model
IS estimated from data [Patrini et al. 2017].

Evaluation of improved technique

We examined the effect of an improved technique,
which we developed to boost the performance in a
severely noisy setting.
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Mutual information regularization

Evaluation on real-world noise T e y o
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We tested rGANSs in a real-world noise setting using E ‘Ln v -

Clothing1M [Xiao et al. 2015], which includes real-world ﬂ g M ﬂ ﬂ ﬂi ﬂ M ﬂ l . ﬁ

noisy labeled data. Quialitative results on Clothing1M



