Class-Distinct and Class-Mutual Image Generation with GANs

Training data
Smaller than 5

Even

1 0 4 2 6

A

A ∩ B

B

Classes overlap

CP-GAN (Ours)

A

Classifier’s posterior

Generator

A ∩ B

A ∩ ¬B

¬A ∩ B

Class specificity controllable

Takuhiro Kaneko¹
Yoshitaka Ushiku¹
Tatsuya Harada¹,²

¹The University of Tokyo
²RIKEN

Code
Objective: Class-distinct and class-mutual image generation

Our goal is to construct a class-distinct and class-mutual image generator

- Generates **class-distinct** (A or B) and **class-mutual** ($A \cap B$) images **selectively**, when given **class-overlapping data**.

![Diagram showing class-distinct and class-mutual sets](image-url)
Challenges: Limitations of naïve conditional generative models

Naïve **conditional generative models** (e.g., **AC-GAN** [1] and **cGAN** [2, 3])

- Optimized conditioned on **discrete labels**.
- Generate data of each class **separately** even if **classes overlap**.

![Diagram](image)

Contributions: Proposal of classifier’s posterior GAN

We propose **classifier’s posterior GAN (CP-GAN)**

- Represents *between-class relationships* in the generator input.
- Generates data *selectively* conditioned on the *class-specificity*.

![Diagram showing training data and CP-GAN (Ours)]

Training data
- Smaller than 5
- Even

Classes overlap

CP-GAN (Ours)

- Probability density
- Generator
- Classifier’s posterior

Class-specificity controllable
Main idea: Redesign generator input and objective of AC-GAN

We redesign the **generator input** and the **objective function** of AC-GAN.

AC-GAN (Previous)

CP-GAN (Ours)
Baseline: **AC-GAN**

Training data: Two-class Gaussian distributions with class overlapping
Baseline: **AC-GAN**

Training data: Two-class Gaussian distributions with class overlapping

- x^r represents real data.
- s^r represents the classifier's posterior.
- D/C indicates a discriminator/critic block.
- G represents a generator block.

Discrete prior: y^g, z^g
Baseline: **AC-GAN**

Training data: Two-class Gaussian distributions with class overlapping.

- Real data x^r
- Classifier's posterior
- Real/Fake s^r
- Fits discrete prior

Discrete prior y^g
- G
- AC loss
- D/C
- Classifier's posterior s^g
Baseline: **AC-GAN**

Training data: Two-class Gaussian distributions with class overlapping
Proposal: **CP-GAN**

Training data: Two-class Gaussian distributions with class overlapping

```
\[ x^r \rightarrow D/C \rightarrow \text{Real/Fake} \rightarrow s^r \]
```

- **Real data**
- **D/C**
- **Real/Fake**
- **Classifier’s posterior**

```
\[ s^r \rightarrow G \rightarrow \text{Reused} \]
```

- **Classifier’s posterior**
- **G**

Represents class-overlapping state
Proposal: **CP-GAN**

Training data: Two-class Gaussian distributions with class overlapping

![Diagram of CP-GAN model with real and fake data, classifier's posterior, and KL-CP loss](attachment:diagram.png)
Proposal: CP-GAN

Training data: Two-class Gaussian distributions with class overlapping
Experiment I: Controlled class-overlapping data

CIFAR-10to5: The original ten classes [4] are divided into five classes *synthetically.*

<table>
<thead>
<tr>
<th>Expected states</th>
<th>A</th>
<th>A ∩ B</th>
<th>B ∩ C</th>
<th>C ∩ D</th>
<th>D ∩ E</th>
<th>E ∩ A</th>
<th>FID↓</th>
<th>DMA↑</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-GAN [1]</td>
<td>![AC-GAN Images]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.7</td>
<td>36.6</td>
</tr>
<tr>
<td>cGAN [3]</td>
<td>![cGAN Images]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.9</td>
<td>32.3</td>
</tr>
<tr>
<td>CFGAN [5]</td>
<td>![CFGAN Images]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15.8</td>
<td>50.9</td>
</tr>
<tr>
<td>CP-GAN</td>
<td>![CP-GAN Images]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12.5</td>
<td>95.0</td>
</tr>
</tbody>
</table>

FID (Fréchet Inception distance) [6], DMA (Class-distinct and class-mutual accuracy)

✓ Achieves the best FID.
✓ Generates class-distinct and class-mutual images selectively.

Experiment II: Real-world class-overlapping data

Clothing1M [7]: Includes *real-world* class-overlapping data (the annotation accuracy: 61.54%).

<table>
<thead>
<tr>
<th>Expected states</th>
<th>T-Shirt</th>
<th>Knitwear</th>
<th>Chiffon</th>
<th>Sweater</th>
<th>Windbreaker</th>
<th>Jacket</th>
<th>Down Coat</th>
<th>Suit</th>
<th>Shawl</th>
<th>Vest</th>
<th>Underwear</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-GAN [1]</td>
<td></td>
</tr>
<tr>
<td>FID: 9.3</td>
<td>49.5</td>
<td>49.2</td>
<td>23.7</td>
<td>52.4</td>
<td>5.9</td>
<td>27.0</td>
<td>23.8</td>
<td>70.4</td>
<td>81.3</td>
<td>60.5</td>
<td>54.3</td>
</tr>
<tr>
<td></td>
<td>44.8</td>
<td>48.0</td>
<td>25.7</td>
<td>37.6</td>
<td>34.0</td>
<td>35.8</td>
<td>52.5</td>
<td>64.8</td>
<td>73.1</td>
<td>44.9</td>
<td>52.6</td>
</tr>
<tr>
<td></td>
<td>51.4</td>
<td>60.2</td>
<td>42.2</td>
<td>55.7</td>
<td>33.6</td>
<td>48.6</td>
<td>86.3</td>
<td>92.7</td>
<td>91.9</td>
<td>74.2</td>
<td>70.6</td>
</tr>
<tr>
<td>cGAN [3]</td>
<td></td>
</tr>
<tr>
<td>FID: 11.4</td>
<td>49.5</td>
<td>49.2</td>
<td>23.7</td>
<td>52.4</td>
<td>5.9</td>
<td>27.0</td>
<td>23.8</td>
<td>70.4</td>
<td>81.3</td>
<td>60.5</td>
<td>54.3</td>
</tr>
<tr>
<td></td>
<td>44.8</td>
<td>48.0</td>
<td>25.7</td>
<td>37.6</td>
<td>34.0</td>
<td>35.8</td>
<td>52.5</td>
<td>64.8</td>
<td>73.1</td>
<td>44.9</td>
<td>52.6</td>
</tr>
<tr>
<td></td>
<td>51.4</td>
<td>60.2</td>
<td>42.2</td>
<td>55.7</td>
<td>33.6</td>
<td>48.6</td>
<td>86.3</td>
<td>92.7</td>
<td>91.9</td>
<td>74.2</td>
<td>70.6</td>
</tr>
<tr>
<td>CP-GAN</td>
<td></td>
</tr>
<tr>
<td>FID: 6.8</td>
<td>51.4</td>
<td>60.2</td>
<td>42.2</td>
<td>55.7</td>
<td>33.6</td>
<td>48.6</td>
<td>86.3</td>
<td>92.7</td>
<td>91.9</td>
<td>74.2</td>
<td>70.6</td>
</tr>
</tbody>
</table>

FID (Fréchet Inception distance) [6], **DMA** (Class-distinct accuracy; numbers below images)

✓ Achieves the **best FID**.
✓ Generates **class-distinct images selectively**.

Thank you!

Our code is publicly available at
https://github.com/takuhirok/CP-GAN/

AC-GAN (Previous)

CP-GAN (Ours)

Class-Distinct and Class-Mutual Image Generation with GANs