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Objective: Class-distinct and class-mutual image generation

Our goal is to construct a class-distinct and class-mutual image generator
« Generates class-distinct (A or B) and class-mutual (AnB) images selectively,
when given class-overlapping data.
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Challenges: Limitations of nalve conditional generative models

Naive conditional generative models (e.g., AC-GAN [1] and cGAN [2, 3])

« Optimized conditioned on discrete labels.
« Generate data of each class separately even if classes overlap.
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[1] Odena et al. ICML 2017. [2] Mirza & Osindero. arXiv 2014. [3] Miyato & Koyama. ICLR 2018. 3



Contributions: Proposal of classifier’s posterior GAN

We propose classifier’s posterior GAN (CP-GAN)
« Represents between-class relationships in the generator input.
« (Generates data selectively conditioned on the class-specificity.
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Main idea: Redesign generator input and objective of AC-GAN

We redesign the generator input and the objective function of AC-GAN.
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Baseline: AC-GAN

Training data: Two-class Gaussian distributions with class overlapping
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Baseline: AC-GAN

Training data: Two-class Gaussian distributions with class overlapping
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Baseline: AC-GAN

Training data: Two-class Gaussian distributions with class overlapping
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Proposal: CP-GAN

Training data: Two-class Gaussian distributions with class overlapping
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Proposal: CP-GAN

Training data: Two-class Gaussian distributions with class overlapping
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Proposal: CP-GAN

Training data: Two-class Gaussian distributions with class overlapping
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Experiment I: Controlled class-overlapping data

CIFAR-10to5: The original ten classes [4] are divided into five classes synthetically.
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FID (Fréchet Inception distance) [6], DMA (Class-distinct and class-mutual accuracy)

v Achieves the best FID.
v Generates class-distinct and class-mutual images selectively.
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[1] Odena et al. ICML 2017. [3] Miyato & Koyama. ICLR 2018. [4] Krizhevsky. 2009.
[5] Kaneko et al. CVPR 2017. [6] Heusel et al. NIPS 2017.



Experiment II: Real-world class-overlapping data

Clothing1M [71: Includes real-world class-overlapping data (the annotation accuracy: 61.54%).
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[1] Odena et al. ICML 2017. [3] Miyato & Koyama. ICLR 2018. [6] Heusel et al. NIPS 2017. [7] Xiao et al. CVPR 2015. 14



Thank you!

Our code is publicly available at
https://github.com/takuhirok/CP-GAN/
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