Class-Distinct and Class-Mutual Image Generation with GANs

Training data
Smaller than 5

Even

A \cap B

B

Classes overlap

A

CP-GAN (Ours)

Classifier’s posterior

A

Generator

\begin{align*}
& A \cap \neg B \\
& A \cap B \\
& \neg A \cap B
\end{align*}

Class specificity controllable

Takuhiro Kaneko1, Yoshitaka Ushiku1, Tatsuya Harada1,2

1The University of Tokyo 2RIKEN

Code
Objective: Class-distinct and class-mutual image generation

Our goal is to construct a **class-distinct and class-mutual image generator**

- Generates **class-distinct** (A or B) and **class-mutual** ($A \cap B$) images **selectively**, when given **class-overlapping data**.

Challenge: Limitations of naïve conditional generative models

Naïve conditional generative models (e.g., AC-GAN [1] and cGAN [2, 3])

- Optimized conditioned on discrete labels.
- Generate data of each class separately even if classes overlap.

Contribution: Proposal of classifier’s posterior GAN

We propose **classifier’s posterior GAN (CP-GAN)**

- Represents *between-class relationships* in the generator input.
- Generates an image *selectively* conditioned on the *class-specificity*.

Training data
- Smaller than 5
- Even

CP-GAN (Ours)
- **A**
- **B**
- **A ∩ B**
- **A ∩ ~B**
- **A ∩ B**
- **~A ∩ B**

Class-specificity controllable
Main idea: Redesign generator input and objective of AC-GAN

We redesign the **generator input** and the **objective function** of AC-GAN.

AC-GAN

CP-GAN (Ours)
Baseline: AC-GAN

Training data: Two-class Gaussian distributions with class overlapping

\[x^r \rightarrow D/C \rightarrow Real/Fake \]

Classify

Classifier’s posterior

Represents class-overlapping state
Baseline: **AC-GAN**

Training data: Two-class Gaussian distributions with class overlapping

![Diagram of AC-GAN model](image)
Baseline: AC-GAN

Training data: Two-class Gaussian distributions with class overlapping
Baseline: **AC-GAN**

Training data: Two-class Gaussian distributions with class overlapping
Proposal: **CP-GAN**

Training data: Two-class Gaussian distributions with class overlapping
Proposal: **CP-GAN**

Training data: Two-class Gaussian distributions with class overlapping

![Diagram of CP-GAN model with real/fake classification and KL-CP loss](image-url)
Proposal: **CP-GAN**

Training data: Two-class Gaussian distributions with class overlapping

Class-overlapping distribution is learned

KL-CP loss
Experiments I: Controlled class-overlapping data

CIFAR-10 [4]: We made the class overlapping state in a *controlled* manner.

- **Expected states**
 - \(\{9, 0, 1\} \in A\)
 - \(\{1, 2, 3\} \in B\)
 - \(\{3, 4, 5\} \in C\)
 - \(\{5, 6, 7\} \in D\)
 - \(\{7, 8, 9\} \in E\)

<table>
<thead>
<tr>
<th>Expected states</th>
<th>A</th>
<th>A \cap B</th>
<th>B</th>
<th>B \cap C</th>
<th>C \cap D</th>
<th>D \cap E</th>
<th>E</th>
<th>E \cap A</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-GAN [1]</td>
<td></td>
</tr>
<tr>
<td>cGAN [3]</td>
<td></td>
</tr>
<tr>
<td>CFGAN [5]</td>
<td></td>
</tr>
<tr>
<td>CP-GAN</td>
<td></td>
</tr>
</tbody>
</table>

- ✔ Achieves the **best FID** [6].
- ✔ Succeeds in generating **class-distinct and class-mutual images selectively**.

Experiments II: Real-world class-overlapping data

Clothing1M [7]: Includes *real-world* class-overlapping data.

<table>
<thead>
<tr>
<th>Expected states</th>
<th>T-Shirt</th>
<th>Shirt</th>
<th>Knitwear</th>
<th>Chiffon</th>
<th>Sweater</th>
<th>Windbreaker</th>
<th>Hoodie</th>
<th>Jacket</th>
<th>Down Coat</th>
<th>Suit</th>
<th>Shawl</th>
<th>Dress</th>
<th>Underwear</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC-GAN [1]</td>
<td>![Images]</td>
</tr>
<tr>
<td>cGAN [3]</td>
<td>![Images]</td>
</tr>
<tr>
<td>CP-GAN</td>
<td>![Images]</td>
</tr>
</tbody>
</table>

✓ Achieves the **best FID** [6].
✓ Succeeds in generating **class-distinct images selectively**.

Thank you!

Our code is publicly available at

https://github.com/takuhirok/CP-GAN/

AC-GAN

CP-GAN (Ours)

Class-Distinct and Class-Mutual Image Generation with GANs