Class-Distinct and Class-Mutual

Image Generation with GANs
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Introduction

Class-distinct and class-mutual image generation

- Given: Class-overlapping data
- Goal: To construct a generator that can generate
class-distinct and class-mutual images selectively
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Proposed Method: Classifier’s Posterior Generative Adversarial Networks (CP-GAN)

- Key 1dea: We redesign the generator input and the objective function of AC-GAN. (G: Generator, D: Discriminator, C: Classifier)

Baseline: AC-GAN -
- i Real/Fake
— D/C s’

Real data Classify

Classifier’s
posterior

29 Real/Fake
Yy’ G D/C s?
Discrete CIaSS|ﬁer S
prior - |
Generated data Classify

AC loss Dk (y?||s?) 1.Fitsdiscrete

Class-separate distribution is learned.

Experiments

Experiment I: Controlled class-overlapping data
CIFAR-10to5: Class overlaps are made synthetically
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Class-overlapping distribution is learned.

Experiment Il: Real-world class-overlapping data

Clothing1

The data are

M [Xxiao+201512 Includes real-world class-overlapping data
collected from shopping web sites (the annotation accuracy: 61.54%).
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AC-GAN
[Odena+2017]
FID: 9.3 49.5 492 237 524 59 270 238 704 81.3 60.5 350 60.7 543 54.7
cGAN

[Miyato+2018]
FID: 11.4

448 48.0 257 37.6 34.0 358 525 648 73.1 449 749 52,6 418 624

We divide the original ten classes (O, ..., 9) [Krizhevsky2009] into five classes (A, ..., E).
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AC-GAN
[Odena+2017] 13.7 36.6
cGAN
[Miyato+2018] 16.9 32.3
CFGAN
[Kaneko+2017] 15.8 50.9
CP-GAN 12.5 95.0

FID (Fréchet Inception distance), DMA (Class-distinct and class-mutual accuracy)

v Achieves the best FID

v Generates class-distinct and class-mutual images selectively

CP-GAN

FID: 6.8
FID (Fréchet

v Achiev

51.4 60.2 422 557 336 48.6 86.3 679 92.7 67.6 91.9 74.2 70.6 68.1
Inception distance), DA (Class-distinct accuracy; numbers below images)

es the best FID

v Generates class-distinct images selectively



