
- Goal: To construct a generator that can generate
              class-distinct and class-mutual images selectively

Introduction

- Given: Class-overlapping data
Class-distinct and class-mutual image generation

AC-GAN (Previous) [Odena+2017]

Optimized conditioned on 
discrete labels
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CP-GAN (Proposed)
Represents between-class 
relationships using CP

Limited to generate data of 
each class separately

Able to generate data on 
the basis of class specificity

Challenges

CP-GAN code

Proposed Method: Classifier’s Posterior Generative Adversarial Networks (CP-GAN)

Baseline: AC-GAN Proposal: CP-GAN
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Class-separate distribution is learned. Class-overlapping distribution is learned.
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2. No gap0. Reused

- Key idea: We redesign the generator input and the objective function of AC-GAN. (G: Generator, D: Discriminator, C: Classifier)

Experiments
Experiment I: Controlled class-overlapping data Experiment II: Real-world class-overlapping data
CIFAR-10to5: Class overlaps are made synthetically
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{9, 0, 1} ∈ A
{1, 2, 3} ∈ B
{3, 4, 5} ∈ C
{5, 6, 7} ∈ D
{7, 8, 9} ∈ E

0: Airplane
1: Automobile
2: Bird
3: Cat
4: Deer

5: Dog
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7: Horse
8: Ship
9: Truck
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CP-GAN

AC-GAN
[Odena+2017]

cGAN
[Miyato+2018]

CFGAN
[Kaneko+2017]
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FID (Fréchet Inception distance), DMA (Class-distinct and class-mutual accuracy)

✔ Achieves the best FID
✔ Generates class-distinct and class-mutual images selectively

Clothing1M [Xiao+2015]: Includes real-world class-overlapping data

Knitwear

Sweater

?

Knitwear Hoodie DressDown Coat

T-Shirt Chiffon SuitWindbreaker Vest
Shirt Sweater ShawlJacket Underwear

49.5 49.2 23.7 52.4 5.9 27.0 23.8 70.4 81.3 60.5 35.0 60.7 54.3 54.7

44.8 48.0 25.7 37.6 34.0 35.8 52.5 64.8 73.1 44.9 74.9 52.6 41.8 62.4

51.4 60.2 42.2 55.7 33.6 48.6 86.3 67.9 92.7 67.6 91.9 74.2 70.6 68.1

CP-GAN

AC-GAN
[Odena+2017]

cGAN
[Miyato+2018]

Expected
states

FID: 9.3

FID: 11.4

FID: 6.8

FID (Fréchet Inception distance), DA (Class-distinct accuracy; numbers below images)

✔ Achieves the best FID
✔ Generates class-distinct images selectively

We divide the original ten classes (0, ..., 9) [Krizhevsky2009] into five classes (A, ..., E).

Contributions

The data are collected from shopping web sites (the annotation accuracy: 61.54%).


