

Blur, Noise, and Compression Robust Generative Adversarial Networks

Tatsuya Harada^{1,2}

Project page

Background: Limitation of standard GAN

Recreates training images faithfully despite image degradation (e.g., blur, noise, and compression)

Proposal: BNCR-GAN (blur, noise, and compression robust GAN)

Learns to generate clean images from degraded images

w/o knowledge of degradation params (e.g., blur kernel types, noise amounts, Q factor values)

Related work 1: AmbientGAN

Learns to **generate clean image** from **degraded images**, but, requires **degradation parameters** are **predefined**

AmbientGAN generator

Simulates image degradation before passing generated images to the discriminator

Discriminator

Distinguishes real degraded images from degraded generated images

Related work 2: NR-GAN (noise robust GAN)

Eliminates the AmbientGAN requirement by introducing a noise generator, but, its application is limited to additive and reversible degradation (i.e., noise)

NR-GAN generator

Challenge to be addressed

Application to irreversible degradation (e.g., blur, compression, and combination of all)

Key ideas

Masking architectures (Mask)

 Adjust degradation strengths using bypasses before and after degradation

BR-GAN with mask

CR-GAN with mask

Adaptive consistency losses (L_{AC})

 Impose consistency between irreversible degradation processes according to degradation strengths

BNCR-GAN with L_{AC}

BR-GAN (blur robust GAN)

Objective function

Blurred image

$$\mathcal{L}_{\text{BR-GAN}} = \mathbb{E}_{\boldsymbol{y}^r}[\log D_{\boldsymbol{y}}(\overline{\boldsymbol{y}^r})] \\ + \mathbb{E}_{\boldsymbol{z_x}, \boldsymbol{z_k}}[\log(1 - D_{\boldsymbol{y}}(\overline{G_{\boldsymbol{x}}(\boldsymbol{z_x}) * G_{\boldsymbol{k}}(\boldsymbol{z_k})}))] \\ \overline{\text{Image} \quad } \overline{\text{Blur kernel}}$$
Convolution

Masking architecture

$$oldsymbol{k}^g = oldsymbol{m_k} \cdot \hat{oldsymbol{k}}^g + (\mathbf{1} - oldsymbol{m_k}) \cdot oldsymbol{k}_I$$
Mask Blur Non-blur

Blur strength is adjusted by trainable mask

BR-GAN generator

CR-GAN (compression robust GAN)

Objective function

Compressed image

$$\begin{split} \mathcal{L}_{\text{CR-GAN}} &= \mathbb{E}_{\boldsymbol{y}^r}[\log D_{\boldsymbol{y}}(\overline{\boldsymbol{y}^r})] \\ &+ \mathbb{E}_{\boldsymbol{z_x}, \boldsymbol{z_q}}[\log (1 - D_{\boldsymbol{y}}(\overline{\boldsymbol{\psi}^g}(G_{\boldsymbol{x}}(\boldsymbol{z_x}), G_q(\boldsymbol{z_q}))))] \\ & \text{Differentiable JPEG} \quad \text{Image} \quad \text{Q factor} \end{split}$$

Masking architecture

$$oldsymbol{y}^g = m_q \hat{oldsymbol{y}}^g + (1-m_q) oldsymbol{x}^g$$

MaskCompressed Uncompressed

Uncompressed Adjust Compressed Mask

CR-GAN generator

Compression strength is adjusted by trainable mask

BNCR-GAN (blur, noise, and compression robust GAN)

Objective function

Blurred, noisy, and compressed image
$$\mathcal{L}_{\mathrm{BNCR-GAN}} = \mathbb{E}_{m{y}^r}[\log D_{m{y}}(m{y}^r)]$$
 $+ \mathbb{E}_{m{z_x},m{z_k},m{z_n},m{z_q}}[\log(1-D_{m{y}}(m{\psi}^g(\underline{G_{m{x}}(m{z_x})}*\underline{G_{m{k}}(m{z_k})}+\underline{G_{m{n}}(m{z_n})},\underline{G_{m{q}}(m{z_q})})))]$ Image Blur kernel Noise Q factor

Adaptive consistency losses

Consistency is imposed adaptively according to blur/compression strength

Comparative and ablation studies on CIFAR-10

Blur robust image generation

FID↓	Blur	$\frac{1}{2}$ Blur
GAN AmbientGAN	$43.1 \\ 24.2$	$27.4 \\ 20.7$
BR-GAN BR-GAN w/o mask	23.4 26.6	20.2 22.9

Compression robust image generation

FID↓	Сомр	$\frac{1}{2}$ Comp
GAN AmbientGAN	$\frac{33.3}{40.5}$	$24.7 \\ 22.8$
CR-GAN CR-GAN w/o mask	26.3 38.6	$\frac{22.7}{31.1}$

Blur, noise, and compression robust image generation

FID↓	B+N+C	$\frac{1}{2}$ B+N+C
GAN AmbientGAN	58.0 46.8	34.3 25.6
BR-GAN NR-GAN CR-GAN	52.3 58.1 51.1	31.6 34.6 36.8
BNCR-GAN BNCR-GAN w/o $\mathcal{L}_{\mathrm{AC}}$	34.1 41.0	25.7 28.6

- BR-GAN, CR-GAN, and BNCR-GAN outperform or are comparable to AmbientGAN despite disadvantageous training conditions
- Masking architectures (mask) and adaptive consistency losses (L_{AC}) contribute to performance improvement

Examples of generated images on FFHQ 1/3

Blur robust image generation

Training images (blur)

Generated (FID: 34.1)

Standard GAN (baseline)

Generated (FID: 25.3)

BR-GAN (proposed)

FFHQ: Karras et al., CVPR 2019

Examples of generated images on FFHQ 2/3

Compression robust image generation

Real

Generated (FID: 45.5)

Generated (FID: **25.7**)

Training images (compression)

Standard GAN (baseline)

CR-GAN (proposed)

FFHQ: Karras et al., CVPR 2019

Examples of generated images on FFHQ 3/3

Blur, noise, and compression robust image generation

Training images (blur + noise + compression)

Generated (FID: 34.9)

Standard GAN (baseline)

Generated (FID: 24.2)

BNCR-GAN (proposed)

FFHQ: Karras et al., CVPR 2019

Blur, Noise, and Compression Robust Generative Adversarial Networks

Tatsuya Harada^{1,2}

Project page