Blur, Noise, and Compression Robust Generative Adversarial Networks

3lur+Noise+Compressior

Takuhiro Kaneko¹ Tatsuya Harada^{1,2} ¹The University of Tokyo ²RIKEN

Introduction

Blur, noise, and compression robust image generation

Real

(b) GAN (baseline)

(a) Training images Limitation of standard GAN (b)

- Recreates training images faithfully despite image degradation by blur, noise, and compression (a).

Contribution of BNCR-GAN (c)

- Learns to generate clean images from degraded images (a) without knowledge of degradation parameters (e.g., blur kernel types, noise amounts, or Q factor values).

2 Related work

AmbientGAN [Bora+ICLR2018]

- Learns to generate clean images from degraded images.
- But, requires that degradation parameters are predefined.

Noise robust GAN: NR-GAN [Kaneko+CVPR2020]

- Eliminates the AmbientGAN requirement by learning a noise generator along with an image generator.
- But, requires that an image and degradation components (i.e., noise) can be decomposed additively.
- -> Challenge to be addressed: Application to irreversible degradation (e.g., blur, compression, and combination of all).

B Key ideas

Masking architectures (Mask)

- Adjust degradation strengths in a data-driven manner using bypasses before and after degradation.

Adaptive consistency losses ($L_{\Lambda c}$)

- Impose consistency between irreversible degradation processes according to degradation strengths.

Blur robust GAN: BR-GAN $z_x \rightarrow G_x$ **BR-GAN** generator

Adaptive consistency losses

Consistency is imposed according to blur/compression strength.

Generated (FID: 24.2)

(c) BNCR-GAN (proposed)

NR-GAN generator

Masking architecture

 $oldsymbol{k}^g = oldsymbol{m}_{oldsymbol{k}} \cdot \hat{oldsymbol{k}}^g + (oldsymbol{1} - oldsymbol{m}_{oldsymbol{k}}) \cdot oldsymbol{k}_I$ Mask Blur Non-blui Blur strength is adjusted by trainable mask.

6 Compression robust GAN: CR-GAN

Compression strength is adjusted by trainable mask.

$$D_{\boldsymbol{y}} \overline{(\psi^{g}(G_{\boldsymbol{x}}(\boldsymbol{z}_{\boldsymbol{x}}) \ast G_{\boldsymbol{k}}(\boldsymbol{z}_{\boldsymbol{k}}) + G_{\boldsymbol{n}}(\boldsymbol{z}_{\boldsymbol{n}}), G_{q}(\boldsymbol{z}_{q}))))]}$$

Image Blur kernel Noise Q factor

$$\frac{|G_{\boldsymbol{x}}(\boldsymbol{z}_{\boldsymbol{x}}) - G_{\boldsymbol{x}}(\boldsymbol{z}_{\boldsymbol{x}}) * G_{\boldsymbol{k}}(\boldsymbol{z}_{\boldsymbol{k}})\|^{2}]}{|G_{\boldsymbol{x}}(\boldsymbol{z}_{\boldsymbol{x}}) - \psi^{g}(G_{\boldsymbol{x}}(\boldsymbol{z}_{\boldsymbol{x}}), G_{q}(\boldsymbol{z}_{q}))\|^{2}]}$$

$$= \frac{|G_{\boldsymbol{x}}(\boldsymbol{z}_{\boldsymbol{x}}) - \psi^{g}(G_{\boldsymbol{x}}(\boldsymbol{z}_{\boldsymbol{x}}), G_{q}(\boldsymbol{z}_{q}))|^{2}]}{|G_{\boldsymbol{x}}(\boldsymbol{z}_{\boldsymbol{x}}) - G_{\boldsymbol{x}}(\boldsymbol{z}_{\boldsymbol{x}}) + G$$

Comparative and ablation studies on CIFAR-10

Blur robust image generation

FID↓	Blur	$\frac{1}{2}$ Blur
GAN AmbientGAN	$\begin{array}{c} 43.1\\ 24.2\end{array}$	27.4 20.7
BR-GAN BR-GAN w/o mask	$\frac{23.4}{26.6}$	20.2 22.9

Compression robust image generation

FID↓	Сомр	$\frac{1}{2}$ Comp
GAN AmbientGAN	$\frac{33.3}{40.5}$	$\begin{array}{c} 24.7 \\ 22.8 \end{array}$
CR-GAN CR-GAN w/o mask	26.3 38.6	$\begin{array}{c} 22.7\\ 31.1 \end{array}$

- BR-GAN/CR-GAN outperforms or is comparable to AmbientGAN.

Mask contributes to improve the performance.

Blur, noise, and compression robust *image generation*

FID↓	B+N+C	$\frac{1}{2}$ B+N+0
GAN AmbientGAN	58.0 46.8	34.3 25.6
BR-GAN NR-GAN CR-GAN	$52.3 \\ 58.1 \\ 51.1$	$31.6 \\ 34.6 \\ 36.8$
$\frac{\rm BNCR-GAN}{\rm BNCR-GAN \ w/o \ } \mathcal{L}_{\rm AC}$	$\begin{array}{c} 34.1\\ 41.0\end{array}$	$\begin{array}{c} 25.7\\ 28.6\end{array}$

- BNCR-GAN outperforms or is comparable to AmbientGAN.
- L_{AC} contributes to improve the performance.

NOTE: Representative results are selected. See our paper for detailed results.

8 Examples of generated images on FFHQ

Blur robust image generation

Generated (FID: 34.1)

(b) GAN (baseline)

Compression robust image generation

9 Conclusion

- BNCR-GAN can learn to generate clean images from degraded images without knowledge of degradation parameters.
- Mask and L_{AC} are essential components for obtaining this ability.
- Learned degradation models can be used for unsupervised image restoration by incorporating them into UNIR [Pajot+ICLR2019] (see our paper for details).

(a) Training images

(a) Training images

